摘要。鉴于从属于物种的个体人群中观察到的样本,“物种采样”问题(SSP)要求估计来自同一人群的其他不可观察的不可观察的物种组成的某些特征。在SSP中,估计概率的问题,未见物种的数量以及过去的三十年中出现了,因为它是Nu-Ober方法论和应用工作的主题,主要是在生物学科学中,主要是在统计机器学习,电气工程,电气工程学,理论上的com-Putercutercorcecorcerscocicor,Mecord acter Science,Insperion actersic和Foresicsic和Foresicsic和Forsensic和Foresicsic和Forsensic和Forsensic中。在本文中,我们专注于这些流行的SSP,并在Pitman-Yor过程(PYP)之前概述了其贝叶斯非参数分析(BNP)分析。在回顾文献时,我们通过建立简单的复合二项式和高几何分布来建立新的后验表示,改善了现有后验推论的计算和解释性,通常是通过复杂的共同数字来表达的。We also consider the problem of estimating the discount and scale parameters of the PYP prior, showing a property of Bayesian consistency with respect to esti- mation through the hierarchical Bayes and empirical Bayes approaches, that is: the discount parameter can be estimated consistently, whereas the scale parameter cannot be estimated consistently, thus advising caution in poste- rior inference.我们通过讨论SSP的一些概括(主要是在生物科学领域)来结束我们的工作,这些生物科学领域涉及“特征抽样”,多个人群共享物种和马尔可夫链类别的人群。关键词和短语:贝叶斯非参数,贝叶斯的一致性,覆盖率,覆盖率概率,经验贝叶斯,等级贝叶斯,Pitman-yor过程,“物种采样”问题,看不见的物种。
主要关键词